全球海表流场多尺度结构观测卫星计划

杜岩1,5, 董晓龙2,5, 蒋兴伟1,3, 张玉红1, 朱迪2,5, 王闵杨1, 吴炜1,5, 王祥鹏1,5, 赵章喆1,5, 徐星欧2,5, 唐世林1, 经志友1, 李毅能1, 陈琨4, 陈雯4

1. 中国科学院南海海洋研究所 热带海洋环境国家重点实验室 广州 510301
2. 中国科学院国家空间科学中心 微波遥感技术重点实验室 北京 100190
3. 国家海洋卫星应用中心 北京 100081
4. 中国科学院微小卫星创新研究院 上海 201304
5. 中国科学院大学 北京 100049

摘要:全球海表流场多尺度结构观测卫星计划(Ocean Surface Current multiscale Observation Mission, OSCOM)首次提出海表流场、海面风场和海浪谱(简称 “流–风–浪”)一体化探测的多普勒散射计(Doppler Scatterometer, DOPS)测量原理和系统体制。OSCOM采用Ka-Ku双频多波束圆锥扫描体制的真实孔径雷达,将实现超过1000 km观测刈幅、公里级分辨率的“流–风–浪”一体化卫星直接观测。OSCOM将突破海洋亚中尺度非平衡态动力学、海洋多尺度相互作用、海气耦合的研究瓶颈,支撑实现海洋系统科学、气候变化等理论研究的重大突破。未来,应用OSCOM海表流速观测的模式改进,将奠定海洋非平衡态过程数值模拟、同化和预报的动力学基础,实现海洋和海气耦合模式的重大改进。通过与多源数据融合,OSCOM海流观测的应用将为海洋生物地球化学循环、碳收支研究和国家重大任务提供支撑。OSCOM科学卫星的实施对于我国地球系统科学和卫星对地观测重大应用的突破有至关重要的意义,有望带动我国应用卫星的发展从追赶、并行走向领跑。
关键词:海表全流场, 海洋多尺度动力过程, 多普勒卫星海洋学, “流–风–浪” 一体化探测, 科学卫星

Ocean Surface Current Multiscale Observation Mission

Yan DU1,5, Xiaolong DONG2,5, Xingwei JIANG1,3, Yuhong ZHANG1, Di ZHU2,5, Minyang WANG1, Wei WU1,5, Xiangpeng WANG1,5, Zhangzhe ZHAO1,5, Xing’ou XU2,5, Shilin TANG1, Zhiyou JING1, Yineng LI1, Kun CHEN4, Wen CHEN4

1. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301
2. Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190
3. National Satellite Ocean Application Service, Beijing 100081
4. Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201304
5. University of Chinese Academy of Sciences, Beijing 100049

Abstract: OSCOM innovatively proposed the Doppler Scatterometer (DOPS) measurement principle, which could detect ocean surface current, ocean surface vector wind, and ocean surface wave spectrum (abbreviation: current-wind-wave) simultaneously. Using DOPS, a real-aperture radar, by a dual-frequency (Ka-Ku) with conically scanned rotating multi-pencil-beam antenna, OSCOM could conduct the integrated observations of current-wind-wave with a swath of more than 1000 km and a high-resolution of kilometer spatial scale. OSCOM will break through the research bottlenecks of ocean sub-mesoscale and non-equilibrium dynamics, ocean multi-scale interactions, and air-sea coupling, and support the theoretical research in ocean sciences and climate change. With the launch of the OSCOM, the application of sea surface current observations will improve the numerical model study, laying the foundation for numerical simulation, assimilation, and forecasting of oceanic non-equilibrium dynamical processes, achieving significant improvements in ocean and ocean-atmosphere coupled models. The application of OSCOM current observations, together with the other multi-source satellite dataset, including the high-resolution SST and ocean surface color, will provide support for the research in marine biogeochemical cycles and carbon budget, meeting the need of the national strategy. The implementation of OSCOM scientific satellite is of vital significance to the advance of the study and the application of satellite observations in Earth Science, leading to the implementation of the applied satellites in China.
Key words: Ocean surface current, Ocean multiscale dynamic processes, Doppler satellite oceanography, Current-wind-wave integrated observations, Scientific satellite